

here we are again:

Pharmacophore definition:

A "pharmacophore" is a three-dimensional substructure of a molecule that carries ("phoros") the essential features responsible for a drug's ("pharmacon") biological activity. Alternatively described as an ensemble of interactive functional groups with a defined geometry. Basically, one tries to talk the protein language by finding "structural and chemical complementaries" (pharmacophore hypothesis) to target receptors.

... a quick refresh: what is the goal of every SAR study?

The generation of pharmacophoric hypothesis (models)!!!!

Pharmacophore definition: 1. *conformational selection*

Two very interesting concepts:

Stability as a measure of the geometrical deformability of an object;

Rigidity as a measure of the reduction degree of the geometrical deformability of an object.

An easy way to determine *molecular* rigidity:

A rotatable bond is defined as any single non-ring bond, attached to a non-terminal, non-hydrogen atom. Amide C-N bonds are not counted because of their high barrier to rotation.

... and it is easily countable!!!

A golden rule in pharmacophore depiction:

Among all the active compounds always choose the more rigid!

Pharmacophore definition: 2. Pharmacophoric keys selections

First of all... let's convert!

How? But learning from crystallographer, of course!

1. From what we observe, we learn.

1. From what we observe, we learn.

1. From what we observe, we learn.

2. ... and ones learned, we can repeat!

it will be a good conformation?

Pharmacophore definition: 2. *Pharmacophoric keys selections*

Pharmacophore definition: 3. *Interaction triangle*

$$\overrightarrow{d}_1 = 4.3 \text{ Å}$$
 $\overrightarrow{d}_2 = 5.9 \text{ Å}$

$$\overrightarrow{d}_3 = 2.2 \text{ Å}$$

Do you remember...

charge-charge interaction (ionic bond):

charge-dipole interaction:

charge- π interaction:

hydrogen bond:

charge transfer interaction:

 π -π interaction:

dipole-dipole interaction (van der Waals):

$$-\Delta G^0 \cong 5 \div 10$$

$$-\Delta G^0$$
 ≅ 1 ÷ 7

$$-\Delta G^0 \cong 8 \div 10$$

$$-\Delta G^0$$
 ≤ 1 ÷ 7

$$-\Delta G^0 \cong 1 \div 6$$

$$-\Delta G^0$$
 ≅ 1 ÷ 2

$$-\Delta G^0$$
 ≅ 0.5 ÷ 1

Pharmacophore definition:

4. From structural key to pharmacophoric key

	ОН		Ar OH	0	∕NH ₂	_0_	S
1	1	0	0	1	0	0	0
Ar	Ac	Н	D	A	A	A	H

Ar = aromatic

Ac = acid

H = hydrophobic

D = **H**-bonding donor

A = H-bonding acceptor

C = cation

An = anion

The triangle saga:

Any pharmacophoric triangle can be described as a three characters string: ACD

For any triangle we cal calculated numerical descriptors: perimeter, sides length.

Any polygons can be subdivided into a sum of triangles:

Here is another interesting 3D→1D chemical representation transformation!

ACD 462 12

1D

Pharmacophore definition: 5. *Geometric hashing scheme*

What we need for a good fishing?

a bit of combinatorial calculus:

Hypothesis: consider a pharmacophoric model with three plausible 'features' (interactors) how many pharmacophoric triangles can be generated?

This is a "simple disposition – without repetitions)" of n elements grouped k per time:

$$C_{3,3} = \frac{n!}{(n-k)!} = \frac{3!}{(3-3)!} = 6$$

a bit of combinatorial calculus:

Now is easier:

$$C_{4,3} = \frac{n!}{(n-k)!} = \frac{4!}{(4-3)!} = 24$$

$$C_{5,3} = \frac{n!}{(n-k)!} = \frac{5!}{(5-3)!} = 60$$

Pharmacophore definition: 5. *Geometric hashing scheme*

D = HBond Denor A = HBond Acceptor H = Hydrophobic Point Here is a possible work-flow:

The real drama of pharmacophore fishing:

This fishing is inevitably rich of false positives!!!

Generally speaking, there may be many compounds that have a common pharmacophoric hypothesis but, at the level of their recognition site, they miss the proper topological complementarity (shape and volume).

The real drama of pharmacophore fishing:

This fishing is inevitably rich of false positives!!!

..... interactions

shape/volume

... and if I deal with more than ONE pharmacophore hypothesis?

do you remember this equilibrium?

My warm suggestion is to build up more that ONE pharmacophore hypothesis!

What we are still orphans:

- Virtualize molecular topology (shape and volume);
- Virtualize the generation of alternative conformers;
- Virtualize the evaluation of the stability of each conformer.

Ed ecco un'altra interessante applicazione! Immaginiamo che:

Sovrapponiamo?

Identifichiamo gli interattori

Identifichiamo i triangoli farmacoforici Identifichiamo le distanze da "minimizzare" Minimizziamo!

Uniformiamo il sistema di riferimento Roto-trasliamo affinchè le distanze farmacoforiche hanno raggiunto il loro minimo di intensità Sovrapposto!!!

Provocazione n. 1:

Sareste in grado di proporre un ragionevole modello farmacoforico per la struttura molecolare qui sotto riportata?

... beh, proviamo a definirlo?

... siamo proprio sicuri?

ci ricordiamo dell'equilibrio tautomerico?!?!

ed il farmacoforo allora?

... siamo tranquilli?

ci ricordiamo dell'equilibrio conformazionale?!?!

e quindi?

... ma quanti farmacofori abbiamo?

... capito il problema, però?

