

Confidential and Property of ©2012 Molecular Modeling Section Dept. Pharmaceutical and Pharmacological Sciences – University of Padova - Italy

Histaminergic system and antiulcer drugs

Parte I

Confidential and Property of ©2012 Molecular Modeling Section Dept. Pharmaceutical and Pharmacological Sciences – University of Padova - Italy

1. Introduction

1.1 Ulcers

- Localised erosions of the mucous membranes of the stomach and duodenum
- Potentially fatal if untreated
- Caused by stress, infection (*H. Pylori*) and drugs (NSAIDS)
- Aggrevated by gastric acid (HCl) in the stomach

1.2 Therapy of ulcers

- Lower the levels of gastric acid -histamine antagonists and proton pump inhibitors
- Antibacterial agents vs. H. Pylori
- Herbal remedies

1. Introduction 1.1 Biosynthesis

MS Confidential and Property of ©2012 Molecular Modeling Section Dept. Pharmaceutical and Pharmacological Sciences – University of Padova - Italy

1. Introduction 1.3 Histamine effetcts

MS Confidential and Property of ©2012 Molecular Modeling Section Dept. Pharmaceutical and Pharmacological Sciences – University of Padova - Italy

1. Introduction

1.3 Histamine effetcts

Confidential and Property of ©2012 Molecular Modeling Section MS Dept. Pharmaceutical and Pharmacological Sciences – University of Padova - Italy

Introduction 1.3 Parietal cells and gastric acid release

• Release of gastric acid is promoted by acetylcholine, gastrin and histamine

1. Introduction 1.4 SNC histaminergic control

2. Histamine

2.1 Properties

- A chemical messenger released by cells
- Acts as a local hormone

- Two possible tautomers
- pK_a for the α -NH₂ group = 9.80.
- % ionisation at pH 7.4 = 99.6
- pK_a for the imidazole ring = 5.74
- Imidazole ring is not ionised at blood pH

BUT

Also released by allergies, asthma, hay fever and insect bites

3. Classical Antihistamines

Commonly used to treat symptoms such as inflammation & itching

- But no effect on gastric acid release
- Casts doubt on histamine receptors being present on parietal cells
- Histamine may promote gastric acid release indirectly
- SK&F propose two types of histamine receptor (H₁ and H₂)
- H₁ responsible for classical actions of histamine
- H₂ proposed as the receptor on the parietal cells
- Claim that H₂ receptors are unaffected by classical antihistamines
- Implies classical antihistamines are H₁ specific

4. Histamine as a Lead Compound

- No known H₂ antagonist at the time no lead compound
- SK&F decide to use histamine itself as the lead compound
- Aim is to alter an agonist into an antagonist
- Compare development of propranolol (β -blocker) from adrenaline
- Need to know SAR requirements for H₂ agonists
- Analogues tested by their ability to promote gastric acid release
- Does not prove existence of H₂ receptor

5. SAR for H₁ and H₂ Agonists

- Two nitrogen atoms are required for H₁ agonist activity
- All three nitrogen atoms are required for H₂ agonist activity

6. Strategies for converting Agonists to Antagonists

- Add extra functional groups to find extra binding interactions with the binding site
- Extra binding interactions may result in a different mode of binding resulting in a different induced fit for the receptor
- Different induced fit may fail to activate the receptor
- A a result, analogue binds but fails to activate the receptor
- Analogue likely to bind more strongly than an agonist

6. Strategies for converting Agonists to Antagonists

Different induced fit

MS Confidential and Property of ©2012 Molecular Modeling Section Dept. Pharmaceutical and Pharmacological Sciences – University of Padova - Italy

6. Strategies for converting Agonists to Antagonists

Examples - extra hydrophobic groups

Results

- No antagonist activity observed with extra hydrophobic groups
- Try adding extra hydrophilic groups instead
- Aim is to search for extra polar binding regions

7. N^a-Guanylhistamine

7.1 Biological properties

- Partial agonist promotes HCl release but less strongly than histamine
- Prevents histamine from fully promoting the release of HCl
- SK&F suggest that N^α-guanylhistamine is binding to the proposed H₂ receptor, resulting in weak activation
- Whilst present, N^α-guanylhistamine blocks histamine from binding

7. N^a-Guanylhistamine

7.2 Structure and chemical properties

- The guanidine group is basic and ionised
- Different tautomers are possible
- The positive charge can be delocalised

The positive charge is more diffuse and can be further away from the imidazole ring

8. Binding Theory for Agonists and Antagonists 8.1 Binding regions

- Three binding regions are proposed for the H₂ receptor an imidazole binding region and two polar binding regions
- Two binding modes are proposed one for agonists and one for antagonists
- The imidazole binding region is common to both binding modes
- One of the polar binding regions is accessed by agonists and the other by antagonists
- The antagonist polar region is further from the imidazole

8. Binding Theory for Agonists and Antagonists 8.2 Binding of histamine

No interaction as an antagonist

Strong interaction as an agonist

- Histamine has a short chain
- Charged α -nitrogen can only reach the polar agonist region
- The antagonist binding region is out of range
- Histamine can only bind as an agonist
- Histamine acts as a pure agonist

8. Binding Theory for Agonists and Antagonists 8.3 Binding of N^{α} -guanylhistamine

- Positive charge on the structure is more diffuse and further out
- Allows N^{α} -guanylhistamine to bind in two different modes
- Structure binds as an agonist in one mode and as an antagonist in the other mode, making it a partial agonist

SK&F propose that the guanidine moiety interacts with a carboxylate ion in the antagonist binding region by means of two H-bonds and an ionic interaction

9.2 The evidence

Structures A and B are both partial agonists, but structure A has greater antagonist properties

9. Chelation Binding Theory 9.3 Binding modes for analogues

Positive charge is localised further out leading to better interactions with the antagonist binding region Only one H-bond is possible with the antagonist binding region. Charge is also directed away from the carboxylate ion weaker antagonist property.

• The chelation binding theory was eventually disproved but it served a purpose in explaining results and pushing the project forward on rational grounds

10. Chain Extension Strategy

10.1 Aim: To push the polar guanidine group further out and to increase the interaction with the antagonist binding region

10.2 Results:

- Antagonist activity of the extended guanidine analogue increases as expected
- Isothiourea analogue might have been expected to have increased antagonist activity since the charge is further out

10. Chain Extension Strategy 10.3 Proposed binding for 3C extension analogues

Different form of hydrogen bonding taking place

Compare 2C bridged analogues

10. Chain Extension Strategy 10.3 Proposed binding for 3C extension analogues

S Confidential and Property of ©2012 Molecular Modeling Section Dept. Pharmaceutical and Pharmacological Sciences – University of Padova - Italy

10. Chain Extension Strategy

10.4 Further evidence

Partial agonists with good antagonist activity (X= Me or SMe)

Binding mode

10. Chain Extension Strategy 10.4 Further evidence

• Emphasis now switches to the types of binding interactions at the polar binding regions

Confidential and Property of ©2012 Molecular Modeling Section Dept. Pharmaceutical and Pharmacological Sciences – University of Padova - Italy

11. Distinguishing between the Polar Binding Regions

11.1 Strategy:

• Replace the ionic guanidine group with a neutral H-bonding group

11.2 Rationale:

- May allow a distinction to be made between the two polar binding regions.
- Ionic bonding is known to be crucial for the agonist binding region
- It may not be crucial for the antagonist binding region

11.3 Method:

• Replace the basic guanidine moiety with a neutral thiourea group

11. Distinguishing between the Polar Binding Regions

11.4 SK&F 91581

No agonist activity, very weak antagonist

Confidential and Property of ©2012 Molecular Modeling Section MS Dept. Pharmaceutical and Pharmacological Sciences – University of Padova - Italy

11. Distinguishing between the Polar Binding Regions

11.5 Comparison between the thiourea and guanidine groups

Similarities - Planarity, geometry, size, polarity, H-bonding ability Differences - Thiourea is neutral while guanidine is basic and ionised

Neutral

Basic

Conclusions -

- Agonist polar region involves ionic and H-bonding interactions
- Antagonist polar region may not require ionic interactions. H-bonding may <u>be sufficient</u>

12. Chain Extension

Strategy

- Extend the carbon bridge to 4 carbons
- Pushes thiourea group further out
- May increase the interaction with the antagonist binding region

Results Discovery of burimamide

12. Chain Extension

Properties of burimamide

- 100 times more active as an antagonist compared to N^αguanylhistamine
- No antagonist activity at H₁ receptors
- Activity too low for oral use

Conclusions –

- Chain extension leads to a pure antagonist with good activity
- Chain extension allows a better overlap of the thiourea group with the antagonist binding region
- Establishes the existence of H₂ receptors

13. The Imidazole Ring 13.1 Structures

- Imidazole ring can exist as two tautomers (I) and (II) as well as two ionised forms (III)
- Which of these is preferred?

13. The Imidazole Ring 13.2 Basicity

Conclusions

- The imidazole ring of histamine is not ionised when it interacts with the imidazole binding region
- The ionised form of burimamide is unlikely to bind well
- Decreasing the basicity and ionisation of the imidazole ring in burimamide closer to that of histamine may increase the binding interactions to the imidazole binding region

13. The Imidazole Ring

13.3 Varying basicity

Strategy

Convert the side chain of burimamide to an e-withdrawing group

Thiaburimamide

pK_a = 6.25 Increase in antagonist activity Non-ionised imidazole is favoured
13. The Imidazole Ring

13.4 Tautomer studies

Tautomer I vs tautomer II

- Favoured tautomer for histamine is I
- Side chain is electron withdrawing

- N^{π} is less basic than N^{τ}
- N^{τ} is more likely to be protonated
- Favoured tautomer for thiaburimamide is also tautomer I

Strategy

- Increase the basicity of N^{τ} relative to N^{π} to further increase the percentage population of tautomer I vs tautomer II
- Add an electron donating group to the imidazole ring closer to N^τ than to N^π

13. The Imidazole Ring13.4 Tautomer studiesMetiamide

- 10 fold increase in antagonist activity w.r.t burimamide
- Electron-donating effect of methyl group is more significant at $N^{\ensuremath{\tau}}$
- Increases basicity of N^τ
- Favours tautomer I over tautomer II
- Increase in pK_a to 6.80
- Increase in ionisation to 20%
- Increase in the population of tautomer (I) outweighs the increase in population of the ionised structures (III)
- Unacceptable side effects kidney damage

Confidential and Property of ©2012 Molecular Modeling Section Dept. Pharmaceutical and Pharmacological Sciences – University of Padova - Italy

14. Alternative Rationales

- The increases in activity for thiaburimamide and metiamide may be due to a conformational effect
- The thioether link increases the length and flexibility of the side chain
- This may lead to increased binding
- The methyl substituent may orientate the side chain into the active conformation i.e. the methyl group acts as a conformational blocker

14. Alternative Rationales

Oxaburimamide

• Less potent than burimamide despite the side chain being electron withdrawing

Possible explanations

- The ether link is smaller and less flexible
- The ether may be involved in a 'bad' hydrogen bond
- There may be an energy penalty involved in desolvating the oxygen prior to binding

15. From Metiamide to Cimetidine

- The side effects of metiamide may be due to the thiourea group
- The thiourea group is not a natural functional group
- Replacing thiourea with a natural functional group may remove the side effects

Thiourea Toxic side effects

Urea Drop in activity

Guanidine Drop in activity but no agonist activity!

Conclusions

- First guanidine analogue to be a pure antagonist
- The longer 4C chain pushes the guanidine unit beyond the agonist binding region, but not beyond the antagonist binding

15. From Metiamide to Cimetidine Binding interactions for the 4C extended guanidine

S.MORO - CFTII 2011/2012

15. From Metiamide to Cimetidine

Strategy:

- Retain the guanidine group
- Guanidine is a natural group present in the amino acid arginine
- Increase activity by making the guanidine group neutral
- Add a strong electron withdrawing group to decrease basicity (e.g. NO₂ or CN)

Cimetidine

16.1 Properties

- Comparable activity to metiamide
- Less side effects
- Inhibits H₂-receptors and lowers levels of gastric acid released
- Marketed in 1976
- Biggest selling prescription drug until ranitidine
- Metabolically stable
- Inhibits cytochrome p450 enzymes
- Drug-drug interactions with diazepam, lidocaine and warfarin

16. Cimetidine (Tagamet) 16.2 The cyanoguanidine moiety

- Acts as a bio-isostere for the thiourea group
- Both groups are planar and of similar geometry
- Both groups are polar but essentially neutral
- Both groups have high dipole moments
- Both groups have low partition coefficients
- The cyanoguanidine group is weakly acidic and weakly basic amphoteric

NHMe

• The cyanogaunidine group is not ionised at pH 7.4

Confidential and Property of ©2012 Molecular Modeling Section Dept. Pharmaceutical and Pharmacological Sciences – University of Padova - Italy **NHMe**

16.3 The cyanoguanidine moiety - tautomers

• The favoured tautomer is the imino tautomer

- The electron withdrawing effect of the CN group is an inductive effect
- The inductive effect is felt most at the neighbouring nitrogen
- The neighbouring nitrogen is least likely to form a bond to hydrogen

16.4 The cyanoguanidine moiety - conformational isomers

- The *E*, *E* and *Z*,*Z* conformations are not favoured X-ray and nmr evidence
- Bad news for the chelation bonding theory
- Chelation to the one carboxylate group requires the *E*,*E* or the *Z*,*Z* conformation

16.5 The cyanoguanidine moiety - binding mode

Two H-bonds are not possible for the favoured conformations Two separate H-bonds to 2 different H-bond acceptors are more likely

Me

17. Analogues

17.1 The urea analogue

- The preferred conformation for the urea analogue is *E*,*E* or *Z*,*Z*
- Weak antagonist
- Unable to bind to two different binding groups in the antagonist binding region

17. Analogues

17.2 Rigid nitropyrrole analogue

- Unable to adopt the *E*,*E* or *Z*,*Z* conformation
- Strongest analogue of cimetidine
- Locked into the active conformation
- Can only interact with two separate H-bond acceptors in the antagonist binding region

18. Desolvation Theory 18.1 The process

- A guanidine unit is highly polar and highly solvated
- Solvated water must be removed prior to binding
- An energy penalty is involved
- The ease of desolvation may affect strength of binding and activity
- A urea group is more hydrophilic than a cyanoguanidine group
- May explain lower activity of the urea analogue

18. Desolvation Theory 18.2 Hydrophobic analogues

Strategy

- Increase the hydrophobic character of the planar aminal system
- Implies less solvation
- Implies less of an energy penalty associated with desolvation
- Implies easier binding and a stronger activity

Result

 Antagonist activity of analogues increases as hydrophobic character increases

Confidential and Property of ©2012 Molecular Modeling Section Dept. Pharmaceutical and Pharmacological Sciences – University of Padova - Italy

18. Desolvation Theory 18.2 Hydrophobic analogues

Confidential and Property of ©2012 Molecular Modeling Section Dept. Pharmaceutical and Pharmacological Sciences – University of Padova - Italy

S.MORO – CFTII 2011/2012

18. Desolvation Theory 18.2 Hydrophobic analogues

Greater activity than expected Hydrophilic group should lower activity

Lower activity than expected based on the hydrophobicity of the group present

Confidential and Property of ©2012 Molecular Modeling Section Dept. Pharmaceutical and Pharmacological Sciences – University of Padova - Italy

S.MORO - CFTII 2011/2012

19. Dipole Moment Theory

19.1 Proposal -

- A dipole-dipole interaction takes places between the drug and the binding site on approach of the drug
- The dipoles line up and orientate the drug
- Good interaction with the binding site occurs if the binding groups are positioned correctly w.r.t the binding regions results in good activity
- Poor interaction occurs if the binding groups are not positioned correctly with respect to the binding regions leads to poor activity

19. Dipole Moment Theory

19.2 Dipole-dipole interactions

Confidential and Property of ©2012 Molecular Modeling Section Dept. Pharmaceutical and Pharmacological Sciences – University of Padova - Italy

S.MORO - CFTII 2011/2012

19. Dipole Moment Theory

19.3 QSAR study including dipole-dipole interactions

- The orientation of the dipole is more important than its strength
- Log (activity) = 9.12 $\cos \theta$ + 0.6 $\log P$ -2.71

- Activity increases as hydrophobicity increases (log *P*)
- The ideal angle of the dipole moment = 30°
- At 30°, $\theta = 0^\circ$ and $\cos \theta = 1$
- At 30°, Log (activity) = $9.12 + 0.6 \log P 2.71$
- When dipole moment does not equal 30°, $\cos \theta < 1$

A section with the section of the se

20. Ranitidine (Zantac)

- Contains a nitroketeneaminal group
- Different heterocyclic ring
- Took over from cimetidine as the most widely sold prescription drug in the world

CFTII: backstage! Met.Av.Chim.Farm. (4) 17.7.07 INT. GIDRNO S. Moro

MS Confidential and Property of ©2012 Molecular Modeling Section Dept. Pharmaceutical and Pharmacological Sciences – University of Padova - Italy

S.MORO – CFTII 2011/2012